Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 25(10): 105193, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36188189

RESUMEN

Blocking the interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with its angiotensin-converting enzyme 2 (ACE2) receptor was proved to be an effective therapeutic option. Various protein binders as well as monoclonal antibodies that effectively target the receptor-binding domain (RBD) of SARS-CoV-2 to prevent interaction with ACE2 were developed. The emergence of SARS-CoV-2 variants that accumulate alterations in the RBD can severely affect the efficacy of such immunotherapeutic agents, as is indeed the case with Omicron that resists many of the previously isolated monoclonal antibodies. Here, we evaluate an ACE2-based immunoadhesin that we have developed early in the pandemic against some of the recent variants of concern (VoCs), including the Delta and the Omicron variants. We show that our ACE2-immunoadhesin remains effective in neutralizing these variants, suggesting that immunoadhesin-based immunotherapy is less prone to escape by the virus and has a potential to remain effective against future VoCs.

2.
ACS Biomater Sci Eng ; 8(6): 2553-2563, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35608934

RESUMEN

Delivering medication to the lungs via nebulization of pharmaceuticals is a noninvasive and efficient therapy route, particularly for respiratory diseases. The recent worldwide severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic urges the development of such therapies as an effective alternative to vaccines. The main difficulties in using inhalation therapy are the development of effective medicine and methods to stabilize the biological molecules and transfer them to the lungs efficiently following nebulization. We have developed a high-affinity angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD-62) that can be used as a medication to inhibit infection with SARS-CoV-2 and its variants. In this study, we established a nebulization protocol for drug delivery by inhalation using two commercial vibrating mesh (VM) nebulizers (Aerogen Solo and PARI eFlow) that generate similar mist size distribution in a size range that allows efficient deposition in the small respiratory airway. In a series of experiments, we show the high activity of RBD-62, interferon-α2 (IFN-α2), and other proteins following nebulization. The addition of gelatin significantly stabilizes the proteins and enhances the fractions of active proteins after nebulization, minimizing the medication dosage. Furthermore, hamster inhalation experiments verified the feasibility of the protocol in pulmonary drug delivery. In short, the gelatin-modified RBD-62 formulation in coordination with VM nebulizer can be used as a therapy to cure SARS-CoV-2.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Gelatina , Aerosoles/química , Humanos , Pulmón , SARS-CoV-2
3.
FEBS J ; 289(9): 2672-2684, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34826176

RESUMEN

We hereby describe the process of design and selection of nonantibody protein binders mimicking cytokine signaling. We chose to mimic signaling of IFN-λ1, type 3 interferon (also known as IL-29) for its novelty and the importance of its biological functions. All four known interferons λ signal through binding to the extracellular domains of IL-28 receptor 1 (IL-28R1) and IL-10 receptor 2 (IL-10R2). Our binders were therefore trained to bind both receptors simultaneously. The bifunctional binder molecules were developed by yeast display, a method of directed evolution. The signaling capacity of the bivalent binders was tested by measuring phosphorylation of the JAK/STAT signaling pathway and production of mRNA of six selected genes naturally induced by IFN- λ1 in human cell lines. The newly developed bivalent binders offer opportunities to study cytokine-related biological functions and modulation of the cell behavior by receptor activation on the cell surfaces alternative to the use of natural IFN-λ.


Asunto(s)
Interferones , Interleucinas , Antivirales/metabolismo , Citocinas/metabolismo , Humanos , Interferones/metabolismo , Interleucinas/metabolismo , Transducción de Señal
5.
Sci Signal ; 14(710): eabe4627, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34813358

RESUMEN

Type I interferons bind to cell surface receptors composed of the subunits IFNAR1 and IFNAR2, the intracellular domains (ICDs) of which are associated with the kinases TYK2 and JAK1, respectively. Ligand binding results in the cross-phosphorylation of TYK2 and JAK1, which then phosphorylate tyrosine residues in the ICDs of the receptor subunits and members of the STAT family of transcription factors. The phosphorylated STATs migrate to the nucleus and drive transcription. We analyzed receptor mutants in knockout cells to study the functional importance of various regions of the receptor ICDs. For IFNAR1, only the TYK2 binding site in the ICD was required for signaling. In contrast, successive truncations of the ICD of IFNAR2 proportionally decreased constitutive STAT binding, STAT phosphorylation, and target gene activation. These findings fit a model in which nonsuccessive stretches along the ICD interact with STATs. Tyrosine residues in the IFNAR1 ICD were not required for signaling, and single tyrosine mutations in the IFNAR2 ICD did not affect signal activation. However, simultaneous mutation of all the tyrosine residues in IFNAR2-ICD reduced STAT phosphorylation, STAT-mediated transcriptional activation, and antiviral activity but not constitutive STAT2 binding. We suggest that tyrosine phosphorylation on IFNAR2-ICD drives the dissociation of phosphorylated STATs, thus maintaining high signaling flux.


Asunto(s)
Interferón Tipo I , Quinasas Janus , Receptor de Interferón alfa y beta , Factores de Transcripción STAT , Transducción de Señal , Células HeLa , Humanos , Inmunidad Innata , Receptor de Interferón alfa y beta/genética
6.
PLoS Pathog ; 17(8): e1009800, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437657

RESUMEN

Type I Interferons (IFN-Is) are a family of cytokines which play a major role in inhibiting viral infection. Resultantly, many viruses have evolved mechanisms in which to evade the IFN-I response. Here we tested the impact of expression of 27 different SARS-CoV-2 genes in relation to their effect on IFN production and activity using three independent experimental methods. We identified six gene products; NSP6, ORF6, ORF7b, NSP1, NSP5 and NSP15, which strongly (>10-fold) blocked MAVS-induced (but not TRIF-induced) IFNß production. Expression of the first three of these SARS-CoV-2 genes specifically blocked MAVS-induced IFNß-promoter activity, whereas all six genes induced a collapse in IFNß mRNA levels, corresponding with suppressed IFNß protein secretion. Five of these six genes furthermore suppressed MAVS-induced activation of IFNλs, however with no effect on IFNα or IFNγ production. In sharp contrast, SARS-CoV-2 infected cells remained extremely sensitive to anti-viral activity exerted by added IFN-Is. None of the SARS-CoV-2 genes were able to block IFN-I signaling, as demonstrated by robust activation of Interferon Stimulated Genes (ISGs) by added interferon. This, despite the reduced levels of STAT1 and phospho-STAT1, was likely caused by broad translation inhibition mediated by NSP1. Finally, we found that a truncated ORF7b variant that has arisen from a mutant SARS-CoV-2 strain harboring a 382-nucleotide deletion associating with mild disease (Δ382 strain identified in Singapore & Taiwan in 2020) lost its ability to suppress type I and type III IFN production. In summary, our findings support a multi-gene process in which SARS-CoV-2 blocks IFN-production, with ORF7b as a major player, presumably facilitating evasion of host detection during early infection. However, SARS-CoV-2 fails to suppress IFN-I signaling thus providing an opportunity to exploit IFN-Is as potential therapeutic antiviral drugs.


Asunto(s)
Interferón beta/metabolismo , SARS-CoV-2/inmunología , Proteínas Virales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Chlorocebus aethiops , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Interferón beta/genética , Interferón beta/farmacología , SARS-CoV-2/efectos de los fármacos , Factor de Transcripción STAT1/metabolismo , Células Vero , Proteínas Virales/genética
7.
Nat Microbiol ; 6(9): 1188-1198, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400835

RESUMEN

SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/administración & dosificación , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Animales , Antivirales/química , COVID-19/genética , COVID-19/metabolismo , Cricetinae , Diseño de Fármacos , Evolución Molecular , Femenino , Humanos , Masculino , Mesocricetus , Simulación de Dinámica Molecular , Mutación , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
8.
J Mol Biol ; 431(17): 3324-3338, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31207241

RESUMEN

Type I interferons (IFNs) have a central role in innate and adaptive immunities, proliferation, and cancer surveillance. How IFN binding to its specific receptor, the IFN α and ß receptor (IFNAR), can drive such variety of processes is an open question. Here, to systematically and thoroughly investigate the molecular mechanism of IFN signaling, we used a CRISPR/Cas9-based approach in a human cell line (HeLa) to generate knockouts (KOs) of the genes participating in the type 1 IFN signaling cascade. We show that both IFNAR chains (IFNAR1 and IFNAR2) are absolutely required for any IFN-induced signaling. Deletion of either signal transducer and activator of transcription 1 (STAT1) or STAT2 had only a partial effect on IFN-induced antiviral activity or gene induction. However, the deletion of both genes completely abrogated any IFN-induced activity. So did a double STAT2-IFN regulatory factor 1 (IRF1) KO and, to a large extent, a STAT1 KO together with IRF9 knockdown. KO of any of the STATs had no effect on the phosphorylation of other STATs, indicating that they bound IFNAR independently. STAT3 and STAT6 phosphorylations were fully induced by type 1 IFN in the STAT1-STAT2 KO, but did not promote gene induction. Moreover, STAT3 KO did not affect type 1 IFN-induced gene or protein expression. Type 1 IFN also did not activate p38, AKT, or ERK kinase. We conclude that type 1 IFN-induced activities in HeLa cells are mediated by STAT1/STAT2/IRF9, STAT1/STAT1, or STAT2/IRF9 complexes and do not require alternative pathways.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Interferón Tipo I/genética , Factor de Transcripción STAT1/genética , Transducción de Señal/genética , Antivirales/farmacología , Regulación de la Expresión Génica , Células HeLa , Humanos , Factor 1 Regulador del Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón , Fosforilación , Receptor de Interferón alfa y beta/genética , Factor de Transcripción STAT2 , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT6
9.
Elife ; 42015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732039

RESUMEN

Social chemosignaling is a part of human behavior, but how chemosignals transfer from one individual to another is unknown. In turn, humans greet each other with handshakes, but the functional antecedents of this behavior remain unclear. To ask whether handshakes are used to sample conspecific social chemosignals, we covertly filmed 271 subjects within a structured greeting event either with or without a handshake. We found that humans often sniff their own hands, and selectively increase this behavior after handshake. After handshakes within gender, subjects increased sniffing of their own right shaking hand by more than 100%. In contrast, after handshakes across gender, subjects increased sniffing of their own left non-shaking hand by more than 100%. Tainting participants with unnoticed odors significantly altered the effects, thus verifying their olfactory nature. Thus, handshaking may functionally serve active yet subliminal social chemosignaling, which likely plays a large role in ongoing human behavior.


Asunto(s)
Mano , Transducción de Señal , Conducta Social , Adulto , Femenino , Humanos , Masculino , Odorantes , Olfato
10.
Neuropsychopharmacology ; 40(4): 966-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25308350

RESUMEN

From infancy we learn to comply with societal norms. However, overt compliance is not necessarily accompanied by a change in internal beliefs. The neuromodulatory processes underlying these different phenomena are not yet understood. Here, we test the role of oxytocin in controlling overt compliance versus internalization of information delivered by a social source. After intranasal oxytocin administration, participants showed enhanced compliance to the erroneous opinion of others. However, this expression was coupled with a decrease in the influence of others on long-term memories. Our data suggest that this dissociation may result from reduced conflict in the face of social pressure, which increases immediate conforming behavior, but reduces processing required for deep encoding. These findings reveal a neurobiological control system that oppositely affects internalization and overt compliance.


Asunto(s)
Memoria a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Oxitocina/administración & dosificación , Conducta Social , Administración Intranasal , Adulto , Aprendizaje por Asociación/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Adaptabilidad/efectos de los fármacos , Estudios Cruzados , Humanos , Masculino , Pruebas Neuropsicológicas , Método Simple Ciego
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...